Surface Estimation, Variable Selection, and the Nonparametric Oracle Property.

نویسندگان

  • Curtis B Storlie
  • Howard D Bondell
  • Brian J Reich
  • Hao Helen Zhang
چکیده

Variable selection for multivariate nonparametric regression is an important, yet challenging, problem due, in part, to the infinite dimensionality of the function space. An ideal selection procedure should be automatic, stable, easy to use, and have desirable asymptotic properties. In particular, we define a selection procedure to be nonparametric oracle (np-oracle) if it consistently selects the correct subset of predictors and at the same time estimates the smooth surface at the optimal nonparametric rate, as the sample size goes to infinity. In this paper, we propose a model selection procedure for nonparametric models, and explore the conditions under which the new method enjoys the aforementioned properties. Developed in the framework of smoothing spline ANOVA, our estimator is obtained via solving a regularization problem with a novel adaptive penalty on the sum of functional component norms. Theoretical properties of the new estimator are established. Additionally, numerous simulated and real examples further demonstrate that the new approach substantially outperforms other existing methods in the finite sample setting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variable Selection in Nonparametric Varying-Coefficient Models for Analysis of Repeated Measurements.

Nonparametric varying-coefficient models are commonly used for analysis of data measured repeatedly over time, including longitudinal and functional responses data. While many procedures have been developed for estimating the varying-coefficients, the problem of variable selection for such models has not been addressed. In this article, we present a regularized estimation procedure for variable...

متن کامل

Variable Selection for Nonparametric Varying-Coefficient Models for Analysis of Repeated Measurements

Nonparametric varying-coefficient models are commonly used for analysis of data measured repeatedly over time, including longitudinal and functional responses data. While many procedures have been developed for estimating the varying-coefficients, the problem of variable selection for such models has not been addressed. In this article, we present a regularized estimation procedure for variable...

متن کامل

Estimation and Variable Selection for Generalized Additive Partial Linear Models By

We study generalized additive partial linear models, proposing the use of polynomial spline smoothing for estimation of nonparametric functions, and deriving quasi-likelihood based estimators for the linear parameters. We establish asymptotic normality for the estimators of the parametric components. The procedure avoids solving large systems of equations as in kernel-based procedures and thus ...

متن کامل

Estimation and Variable Selection for Generalized Additive Partial Linear Models.

We study generalized additive partial linear models, proposing the use of polynomial spline smoothing for estimation of nonparametric functions, and deriving quasi-likelihood based estimators for the linear parameters. We establish asymptotic normality for the estimators of the parametric components. The procedure avoids solving large systems of equations as in kernel-based procedures and thus ...

متن کامل

Variable Selection and Estimation in High-dimensional Varying-coefficient Models.

Nonparametric varying coefficient models are useful for studying the time-dependent effects of variables. Many procedures have been developed for estimation and variable selection in such models. However, existing work has focused on the case when the number of variables is fixed or smaller than the sample size. In this paper, we consider the problem of variable selection and estimation in vary...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Statistica Sinica

دوره 21 2  شماره 

صفحات  -

تاریخ انتشار 2011